

PanDA Overview

Kaushik De Univ. of Texas at Arlington

ORNL GEANT4 Workshop February 11, 2013

Why PanDA

- The ATLAS experiment at the LHC
 - Scientific goals in Richard's talk earlier
 - Hundreds of petabytes of data are distributed world-wide to hundreds of WLCG computing centers
 - Thousands of physicists analyze the data
- PanDA project was started in Fall 2005
 - Goal: An automated yet flexible workload management system (WMS) which can optimally make distributed resources accessible to all users
 - Originally developed in US for US physicists
- Adopted as the ATLAS wide WMS in 2008 (first LHC data in 2009) for all computing applications

References

- https://twiki.cern.ch/twiki/bin/viewauth/Atlas/PanDA
- http://www.usatlas.bnl.gov/twiki/bin/view/PanDA/WebHome
- http://panda.cern.ch:25880/server/pandamon/query
- Recent Improvements in the ATLAS PanDA Pilot, P. Nilsson, CHEP 2012, United States, May 2012
- PD2P: PanDA Dynamic Data Placement for ATLAS,
 T. Maeno, CHEP 2012, United States, May 2012
- Evolution of the ATLAS PanDA Production and Distributed Analysis System, T. Maeno, CHEP 2012, United States, May 2012

PanDA Philosophy

- PanDA WMS design goals:
 - Achieve high level of automation to reduce operational effort
 - Flexibility in adapting to evolving hardware and network configurations
 - Support diverse and changing middleware
 - Insulate user from hardware, middleware, and all other complexities of the underlying system
 - Unified system for production and user analysis
 - Incremental and adaptive software development

PanDA Basics

Key features of PanDA

- Pilot based job execution system
 - ATLAS work is sent only after execution begins on CE
 - Minimize latency, reduce error rates
- Central job queue
 - Unified treatment of distributed resources
 - SQL DB keeps state critical component
- Automatic error handling and recovery
- Extensive monitoring
- Modular design

Simplified View

PanDA Components

- PanDA server
- Database back-end
- PanDA pilot system
 - Job wrapper
 - Pilot factory
- Brokerage
- Dispatcher
- Information system
- Monitoring systems

PanDA Design

- HTTP/S RESTful communication (curl+grid proxy+python) GSI authentication via mod_gridsite
- Workflow is maximally asynchronous

What is a Job

- Basic unit of work is a job:
 - Executed on a CPU resource/slot
 - May have inputs
 - Produces outputs
- ProdSys layer above PanDA to create jobs from ATLAS physics 'tasks'
- User analysis work divided into jobs by PanDA
- Pilot may run multiple jobs on request
- Current scale one million jobs per day

Job States

- Panda jobs go through a succession of steps tracked in DB
 - Defined
 - Assigned
 - Activated
 - Running
 - Holding
 - Transferring
 - Finished/failed

PanDA Interfaces

What is a Pilot Job

- Lightweight execution environment to prepare CE, request actual payload, execute payload, and clean up
- Handles data stage-in and stage-out between worker node disk and local SE
- Pilot jobs started by Job Scheduler(s); actual ATLAS job (payload) is scheduled when CPU becomes available, leading to low latency
- Monitoring thread, job recovery, experiment specific setup and post processing...

Workload Management

ATLAS Computing Model

10 T1s + 1 TO (CERN)

Cloud = T1 + T2s + T2Ds (except CERN)

T2D = multi-cloud T2 sites

> 2-16 T2s in each Cloud

Task → Cloud
Task brokerage
Jobs → Sites
Job brokerage

Task Brokerage

- Matchmaking per cloud is based on:
 - Free disk space in T1 SE, MoU share of T1
 - Availability of input dataset (a set of files)
 - The amount of CPU resources = the number of running jobs in the cloud (static information system is not used)
 - Downtime at T1
 - Already queued tasks with equal or higher priorities
 - High priority task can jump over low priority tasks

Job Brokerage

- Brokerage policies define job assignment to sites
 - IO intensive or TAPE read -> T1
 - CPU intensive -> T1+T2s
 - Flexible: clouds may allow IO heavy jobs at T2s with low weight
- Matchmaking per site in a cloud
 - Software availability
 - Free disk space in SE, Scratch disk size on Worker Node (WN), Memory size on WN
 - Occupancy = the number of running jobs / the number of queued jobs, and downtime
 - Locality (cache hits) of input files

Job Dispatcher

- High performance/high throughput module
- Send matching job to CE upon pilot request
 - REST non-blocking communication
 - Different from brokerage, which is asynchronous
- Matching of jobs based on
 - Data locality
 - Memory and disk space
- Highest priority job is dispatched

Data Management

- LFC file catalog
- Asynchronous file transfers by ATLAS DDM (DQ2)
 - Dispatch of input files from T1 SE to T2 SE, pre-staging of input files on T1 TAPE SE, aggregation of output files to T1 SE from T2 SE
 - CE CPU is not wasted waiting for transfers pilot job starts only after input files ready, and ends after output is put on local SE
- Reusing input/output files as caches
 - Cache lifetime defined per cloud, job brokerage takes cache hits into account
- HTTPS message exchange between PanDA and DDM

Example of Flexibility

- PanDA supports multiple DDM solutions
 - Caching without LFC lookup
 - Pandamover file transfer (using chained Panda jobs)
 - Direct access if requested (by task or site)
 - Customizable Ism (local site mover)
 - Multiple default site movers are available
 - Flexible dataset sizing/containers for scalability

Performance - Production

Average number of concurrently running jobs per day

Cloud Efficiency

Average efficiency >95% - mostly site & application errors remain

User Analysis in PanDA

- Flexibility in job definition
 - Customization of source files
 - Adding new algorithms to application (athena) or arbitrary executables
- Fast turnaround for iteration
 - The user submits a user task (jobset) that is converted to many jobs for parallel execution
 - Supports IO intensive workflows
- Jobs go to data
 - No input file dispatch, no output file aggregation from multiple jobs
 - Data Transfer Request Interface (DaTRi) or PD2P (Dynamic Data Placement) options
- Dataset container (a set of datasets) as input and output
- Calculates priority and quotas per user or per working group

User Analysis Work Flow

Analysis Brokerage

- Works with jobsubset
 - A jobset may be split to be brokered to multiple sites
- Matchmaking per site without cloud-boundaries
 - Scratch disk size on WN, Memory size on WN
 - Software availability, Downtime
 - Occupancy = the number of running jobs / the number of queued jobs
 - Availability of input datasets

Analysis Performance

Average number of concurrently running jobs per day

PD2P – Recent Development

- PD2P = PanDA Dynamic Data Placement
- PD2P used to distribute data for user analysis
 - For production PanDA schedules all data flows, but initial computing model for user analysis was static distribution – PanDA sent jobs to data
 - Soon after LHC data started, we implemented PD2P
- Asynchronous usage based data placement
 - Repeated use of data → additional copies
 - Backlog in processing → additional copies
 - Rebrokerage of queued jobs use new data location
 - Deletion service removes less used data

Cloud Computing and PanDA

- ATLAS cloud computing group set up few years ago to exploit virtualization and clouds
 - PanDA queues in clouds additional resources
 - Tier 3 in clouds good for small institutes
- Excellent progress so far
 - Helix Nebula for MC production (CloudSigma, T-Systems and ATOS – all used)
 - Futuregrid (U Chicago), Synnefo cloud (U Vic)
- Personal PanDA analysis queues being set up

Big Data Plans

- AMS and CMS experiments testing PanDA
- Other common projects under discussion
- DoE recently selected "Next Generation Workload Management and Analysis System for Big Data" for ASCR funding
 - PI: Alexei Klimentov (BNL)
 - Integrate PanDA with dynamic network provisioning
 - Develop and release core PanDA package
 - Workshop at BNL, June 4-6, 2013 details soon

Many Other Evolutions

- Federated storage (FAX)
 - Step by step plan to integrate into PanDA
 - First steps already successful
 - Different than current data management model
- JEDI dynamic job definition
 - Higher level service to automatically define jobs from physics tasks
 - New level of brokerage
 - Better resource matching especially MP jobs

•

PanDA Team

- K. De & T. Wenaus coordinators
- T. Maeno lead developer
- P. Nilsson pilot developer
- Many other US ATLAS developers, CERN IT team, OSG support, Dubna collaborators, and other ATLAS contributions
- PanDA consortium agreements are being signed – PanDA becoming an international project beyond ATLAS

PanDA and OLCF

- OLCF will be new LCF class of PanDA site
- Many details to be worked out in technical discussions
- More in next talk